Impact of SRS in WDM Systems and Its Mitigation by Maximum Likelihood Sequence Detection
نویسنده
چکیده
Non linear effects play a major role in hindering the progress of optical communication systems in terms of higher data rates and long haul transmissions. Maximum Likelihood Sequence Detection (MLSD) has been proposed to combat the nonlinear effects in optical channels. The main objective is to extract the original signal from the received signal which is distorted due to the non linear effects arising in the fiber. MLSD is an optimum detector as it uses the Viterbi detection through the Trellis structure. In this paper, the impact of SRS in the transmitted signal and its mitigation by MLSD are analyzed. MLSD is implemented for DWDM systems with 4 and 8 channels and its performance is compared with the direct detection receivers.
منابع مشابه
A collusion mitigation scheme for reputation systems
Reputation management systems are in wide-spread use to regulate collaborations in cooperative systems. Collusion is one of the most destructive malicious behaviors in which colluders seek to affect a reputation management system in an unfair manner. Many reputation systems are vulnerable to collusion, and some model-specific mitigation methods are proposed to combat collusion. Detection of col...
متن کاملDetermining the Likelihood of Damage in Concrete and its Physical Structure
Applying renormalization group theory to evaluate the safety of overall structure, local damage probability must be obtained at first. According to the results of unit detection test and numerical simulation, the methods how to determine local damage probability was presented in the paper. For small unit, meaning the unit size is far less than the maximum primitive cell or the structure size, i...
متن کاملBearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm
Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...
متن کاملImproving the Performance of Bayesian Estimation Methods in Estimations of Shift Point and Comparison with MLE Approach
A Bayesian analysis is used to detect a change-point in a sequence of independent random variables from exponential distributions. In This paper, we try to estimate change point which occurs in any sequence of independent exponential observations. The Bayes estimators are derived for change point, the rate of exponential distribution before shift and the rate of exponential distribution after s...
متن کاملA Novel Intrusion Detection Systems based on Genetic Algorithms-suggested Features by the Means of Different Permutations of Labels’ Orders
Intrusion detection systems (IDS) by exploiting Machine learning techniques are able to diagnose attack traffics behaviors. Because of relatively large numbers of features in IDS standard benchmark dataset, like KDD CUP 99 and NSL_KDD, features selection methods play an important role. Optimization algorithms like Genetic algorithms (GA) are capable of finding near-optimum combination of the fe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015